Images of SMC Research 1996

Generating Interactive Programming Environments

J. Heering, P. Klint

1. INTRODUCTION
During the past ten years considerable progress has been made towards
the automatic generation of interactive programming/development environ-
ments on the basis of a formal definition of some programming or specifica-
tion language. In most cases, research has focused on the functionality and
efficiency of the generated environments. These are the key quality factors
which will ultimately determine the acceptance of environment generators.
Only marginal attention has been paid to the actual development process
of formal language definitions. Assuming the quality of automatically gen-
erated environments to become satisfactory within a few years, the cost
of developing formal language definitions will then become the next limit-
ing factor determining the ultimate success and acceptance of environment
generators.

We will briefly sketch the design and implementation of a meta-environ-
ment (a development environment for formal language definitions) based on
the formalism ASF+SDF and some of its applications.

2. BACKGROUND—THE CENTAUR SYSTEM

A programming environment is a coherent set of interactive tools for de-

veloping and executing programs or specifications in some formal language.
Well-known examples of such tools are syntax-directed editors, interpreters,
debuggers, code generators, and prettyprinters. Programming environments

317

318

J. HEERING, P. KuNT

have been generated automatically for languages in such diverse application
areas as programming, formal specification, proof construction, text format-
ting, process control, and statistical analysis. All projects in this area are
based on the assumption that major parts of the generated environments
are language independent and that all language dependent parts can be
derived from a suitable language definition.

An example of a general architecture for programming environment gen-
eration 1s the CENTAUR systemi which was developed mainly by INRIA
(France) in the ESPRIT GIPE project (1985-1993) in which CWI and the
University of Amsterdam participated. This is a set of generic components
for building environment generators. The kernel provides a number of useful
data types but does not make many assumptions about, for instance, the
language definition formalism itself. It has been extended with compilers
for various language definition subformalisms as well as with several inter-
active tools. As such CENTAUR is an extensible toolkit rather than a closed
system. We used it to build the ASF+SDF Meta-environment.

3. THE ASF+SDF META-ENVIRONMENT

T'he ASF+5DF Meta-environment [5] is a development environment for for-
mal language definitions and an associated programming environment gen-
erator built on top of CENTAUR. Our research, which was part of the GIPE
project mentioned before, went through three phases:

e Design of an integrated language definition formalism (ASF+SDF).

e Implementation of a generator for interactive programming/develop-
ment environments given a language definition written in ASF+SDF.

e Design and implementation of an interactive development environ-
ment for the ASF+SDF formalism itself.

The result is the Meta-environment mentioned in section 1 in which lan-
guage definitions can be edited, checked and compiled just like programs
can be manipulated in a generated environment, which is an environment
obtaimmed by compiling a language definition. Note that ‘compiling a lan-
guage definition’ and ‘generating an environment’ are synonymous in our
terminology. Both the generator itself and the Meta-environment have been
implemented on top of the CENTAUR system.

Figure 1 shows the overall organization of our system. First of all, we
make a distinction between the Meta-environment and a generated environ-
ment. In the Meta-environment we distinguish:

e A language definition (in ASF+SDF) consisting of a set of modules
M1,...Mn.

GENERATING INTERACTIVE PROGRAMMING ENVIRONMENTS

Language Definition Environment Generator
[—

m e

Mn | EQM

Meta-environment

Generated Environment

Name of module defining
the syntax of L

' .

——— (Generic Syntax-directed Editor

L-Program
(text)

Figure 1. Global organization of the ASF+SDF Meta-environment.

e 'T'he environment generator itself, which consists of three components:
a Module Manager (MM) controlling the overall processing of the mod-
ules in the language definition, the Syntax Manager (SM) controlling
all syntactic aspects, and the Equation Manager (EQM), taking care
of all semantic aspects of the language definition.

The output of the environment generator is used in conjunction with GSE
(Generic Syntax-directed Editor), a generic building block which we use in
generated environments. (SE not only supports text-oriented and syntax-
oriented editing operations on programs but can also be extended by attach- 319
ing ‘external tools’ which perform operations on the edited program such as

checking and evaluation. The main inputs to the Generic Syntax-directed
LEiditor are:

e A program text P.
¢ The modules defining the syntax of P.
e Connections with external tools.

As both the syntax description of P and the definition of external tools
may be distributed over several modules, we are faced with the problem of
managing several sets of syntax rules and equations simultaneously. One
of the major contributions of the ASF+SDF Meta-environment is that the

J. HEERING, P KuNT

system 18 so Interactive and responsive that users are completely unaware of
the fact that each modification they make to their language definition has
major umpacts on the generated environment. For instance, the presence
of a parser generator is completely invisible to the user. As a consequence,
the system is also accessible to ‘nalve’ users who have no previous experi-
ence with tools like scanner and parser generators. Important factors are:
(1) an internal syntax tree representation (‘“term’- see next section) and a
prettyprinter for the language are derived automatically from the language
definition; (2) after parsing, syntax trees are built automatically; (3) the
generated scanner, parser, tree constructor and rewrite system are inter-
faced automatically. To summarize, several parts of the generated imple-
mentation are derived from the language definition, and the system takes
care of the interfacing of all components of the generated environment.

T'he implementation of the ASF4+SDF Meta-environment is based on lazy/
incremental program generation [3].

4. TERM REWRITING
Central to our approach is the fact that we represent everything (i.e., pro-
grams and specifications being edited) as uniform tree structures which we
call terms. All operations on programs—Ilike checking and compiling—are
expressed as operations on their underlying term representation. These op-
erations have to be defined in the language definition and their execution is
based on term rewriting. Given some initial term tq, an attempt is made to
apply a rule in the specification and transform the initial term into a new
term f¢;. This process is repeated until a term ¢,, is obtained to which no
further rule is applicable. This is the normal form of the initial term t,.
Clearly, efficient term rewriting is essential to us and we approach this
problem from several angles. First, by investigating how rewrite rules can be
translated directly to C programs. This would enable elimination of much
of the overhead of term rewriting (in particular the search for matching

- 320 rules) by performing an extensive static analysis of the given set of rules. A

first prototype of this approach, the Asr2C compiler, has been completed
and yields a speed improvement of a factor of 50-100 over our current,
more Interpretive, approach. Secondly, we have investigated incremental
rewriting, a technique where previous runs of the rewriting engine on the
same, or a slightly modified, term are being reused to avoid rewriting steps.
This method 1s important for speeding up interactive tools that operate
on terms. A typical example is an interactive typechecker operating on a
program being edited by a user.

The fact that we base our computations on term rewriting gives us some
Interesting possibilities which can be exploited in the generated environ-
ments. One of them is origin tracking |7], which establishes links between
subterms of the normal form ¢, and the corresponding subterms (origins)

O IERANIC [T RACTIVE PROGRAMMING ENVIROMME TS

of the initial term #y3. This is vital information for interactive tools like
error reporters (to associate an error message with a part of the source
program) and animators (to visualize the statement we are currently exe-
cuting). Generalizations of origin tracking (i.e., dependence tracking) permit
the formulation of program slicing in the context of term rewriting. This
may be usetul in systems for interactive program understanding and reverse
engineering.

5. CURRENT RESEARCH
The Asr2C compiler already mentioned above has demonstrated the po-
tential of compiling algebraic specifications to efficient code. Its redesign,
which 1s currently in progress, will introduce turther optimizations and re-
duce the memory requirements of the generated code. Since the compiler
has itselt been specified in ASF+SDF, it also benefits from these improve-
ments. Other extensions involve selective outermost rewriting [4], and the
use of narrowing for simulating input/output.

In cooperation with J. Field (IBM T.J. Watson Research Center) work
Is 1n progress on optimizing compilers. The basic idea is to translate the

optimizations can be expressed as symbolic manipulations on the interme-
diate PIM representation of the program. These manipulations have been
defined using AsrF+SDF and are based on the w-completion of algebraic
specifications as described in |2].

In close cooperation with the University of Amsterdam (Programming Re-
search Group) various extensions of the Meta-environment are being devel-
oped, e.g., generation of prettyprinters and documentation tools, visual edi-
tors, and the integration of parsing and rewriting. As a step towards reengi-
neering the current implementation of the Meta-environment, a component
interconnection architecture called T'OOLBUS was developed m which all
direct communication between components (‘tools’) is forbidden. Instead,
all such communications are controlled by a process-oriented script that
formalizes all the desired interactions between tools. No assumptions are
being made about the implementation language or execution platform of
each tool: tools may be implemented in different languages and may run
on different computers. By adopting this approach we hope to make the
implementation more flexible and manageable and to tacilitate connecting
externally developed software.

6. APPLICATIONS

Although originally designed as a generator for programming environments,
it has turned out there are many other areas where the ASF+S5SDF Meta-
environment can be applied. These range from general system design and
the specification of environments for various languages to specific areas like

321

J. HEERING, P, KuUNT

query optimization, hydraulic simulation, and application generators. We
sketch three applications in some detail:

e In the context of ESPRIT project COMPARE (1991-1995), which
aimed at the construction of optimizing compilers for parallel archi-
tectures, we designed a specification formalism fSDL for defining the
imtermediate data representations in compilers. In addition, using
ASF+SDF we constructed a generator that compiled these specifica-
tions into C.

e In cooperation with a Dutch bank, we designed a specification lan-
guage for financial products. Given such a product definition, ap-
propriate (Cobol) code can be generated to include the information
related to the product instance in the company’s information systena.
In this way the time needed to construct software for new products
can be reduced from months to days.

e In close cooperation with P.D. Mosses (Aarhus, Denmark), we con-
structed an interactive system to support the development of spec-
ifications written in Action Semantics, a formalism for defining the
semantics of (programming) languages. It is currently being used for
defining the semantics of ANDF (Architecture Neutral Definition For-
mat), an exchange format for compiled programs.

Other applications using the ASF+SDF Meta-environment include:

e Automated induction proofs: D. Naidich (University of Iowa), T.B.
Dinesh (CWI).

e Category theory: S. Vigna (University of Milano).

e Program transformations: M.G.J. van den Brand (UvA), H. Meijer

e Message Sequence Charts: E.A. van der Meulen (UvA), S. Mouw
(TUE).

e m-calculus: A. van Deursen (TUE).
e CRL: J.A. Hillebrand (UvA), J.F. Groote (UU).

A survey of recent work can be found in [6]. Our earlier work on algebraic
specifications can be found in [1].

GENERANMNG INTERACTIVE PROGRAMMING ENVIRONMENTS

ACKNOWLEDGEMENTS

The following persons made contributions to this project: H.C.M. Bakker,
J.A. Bergstra, M.G.J. van den Brand, A. van Deursen, N.W.P. van Diepen,
T.B. Dinesh, C. Dik, H. van Dijk, J.J. Ganzevoort, P.R.H. Hendriks, J.F.Th.
Kamperman, A.S. Klusener, J. W.C. Koorn, M.H. Logger, E.A. van der
Meulen, P.A. Olivier, J.G. Rekers, M. Res, F. Tip, S. Uskiidarli, A. Verhoog,
E. Visser, S. van Vlijmen, P. Vriend, H.R. Walters., A. van Waveren.

REFERENCES

1. J.A. BERGSTRA, J. HEERING, P. KLINT (1989). Algebraic Specifica-
tton, ACM Press Frontier Series. The ACM Press in cooperation with
Addison-Wesley.

2. J. HEERING (1986). Partial evaluation and w-completeness of algebraic
specifications. Theoretical Computer Science 43, 149-167.

3. J. HEERING, P. KLINT, J. REKERS (1994). Lazy and incremental pro-
; y I
gram generation. ACM Transactions on Programming Languages and
Systems 16(3), 1010-1023.

4. J.F.'TH. KAMPERMAN, H.R. WALTERS (1995). Lazy Rewriting and
Eager Machinery. JIEH HSIANG (ed.). Rewriting Techniques and Appli-
cations, 6th International Conference (RTA-95), Lecture Notes in Com-
puter Science, Vol. 914, Springer-Verlag, 147-162.

5. P. KLINT (1993). A meta-environment for generating programming en-
vironments. ACM Transactions on Software Engineering and Method-
ology 2(2), 176-201.

6. M.G.J. VAN DEN BRAND, A. VAN DEURSEN, T.B. DINESH, J.F.TH.
KAMPERMAN, E. VISSER (eds.) (1994). ASF+SDF’95, a workshop on
Generating Tools from Algebraic Specifications. Tecnical Report P9504,
Programming Research Group, University of Amsterdam.

7. A. VAN DEURSEN, P. KLINnT, F. Tip (1993). Origin tracking. Journal
of Symbolic Computation 15, 523--545.

323

